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SUMMARY 

A theoretical interpretation of the temperature depen- 
dence of position and shape of the relaxation-frequency- 
spectrum is given for the dielectric principal relaxation of 
amorphous polymers. Assuming the spectrum obeys the HAVRI- 
LIAK-NEGAMI-formula, its change versus temperature (above 
T~) can be described quantitatively by three WTF-like equa- 
tXons differing mutually in the value of one constant only. 

INTRODUCTION AND FUNDAMENTAL RELATIONS 

It is well established that a polar amorphous polymer 
exhibits a principal (~-) and one or more secondary rela- 
xation processes being reflected in the frequency dependence 
of the dielectric loss-factor ~"(~) showing a peak for 
each process. 

The essential information on a process is provided by 
the frequency ~m of the loss maximum and by the form of 
the ~ vs. log ~ plot both of them depending on the tem- 
perature T. 

The log ~ m vs. T -I plot is strongly curved fbr the 
m-relaxation and can be described by a semi-empirical for- 
mula introduced by WILLIAMS, LANDEL and FERRY (1955), the 
well known WLF-equation. 

Identifying ~m with a mean relaxation frequency 

~m = ~ (I) 

and applying the theory of free volume to s COHEN and 
TURNBULL (1959) have given a theoretical interpretation of 
the WLF-equat ion. 

Measurements at very low frequencies are necessary for 
the determination of ~m near the glass-transition. Be- 
cause of experimental reasons in that case the technique of 
alternating currents (ac) must be replaced by a quasistatic 
one (dc), whereby normally the HAMON-approximation (1952) 
is used for the conversion of dc-into ac-data. 

Referring to the shape of the loss curve HAVRILIAK and 
NEGAMI (1966) proposed a four-parameter model function (HN- 
fun ct i o n) 
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~(~) ~ A~ [ r ( ~ ) ] - ~  s in  [~e  (~)]  (2 )  
r ( ~ ) - [ I +  2(~)~ cos/~+ (~)2~]I/2 

where l s in~ (2a) 

e ( ~ )  = arc tan .... 

~ - intensity of the process 
s O - characteristic frequency (generally in the vicinity 

of ~m) 

~,~ - form-parameters (referring to the shape of the ~ vs. 
log ~ plot 

The parameters are calculable by least square fitting of 
eq. (2) to the experimental data. In the case of dc-data 
this procedure requires additionally a Fourier-transform of 
eq. (2) (SCHLOSSER et al. 1981). An excellent fitting was 
demonstrated for numerous polymers. 

On the other hand it is convenient to represent the ~' vs. 
log~ plot by a spectrum.L(s) of DEBYE-terms which is de- 
fined by the equation (B~TTCHER and BORDWIJK 1978) 

CxO 

~"(~) = ~/ L(s) ~/s d in s (3) co I + ( ~ / s )  2 
L(s) - (logarithmic) distribution of the relaxation frequen- 

cies. 

Comparing the two representations of the function 6~'(~), 
the eq. (2) is an empirical one whereas eq. (3) reflects a 
physical background, therefore, being more appropriate for 
the further considerations. 

The calculation of the spectrum L(s) requires the inver- 
sion of the integral (3). This can be done with the help of 
an analytic formula (KASTNER and SCHLOSSER 1957), involving 
the HN-representation of 6'~(~) leading explicitely to the 
HN-spe ctrum: 

I sin [~ ~ ( s ) l  
L ( s )  (4)  

[~ + 2 (~ )~  c0s~  + (~)2~]~/2-- 
U 

(~s--) -~ + cos ~ 
~0 where ~(s) = ~- arc tan (4a) 

sin@~ 

Further, it will be suitable to replace the parameters 
So, ~,y (characterizing the spectrum) by the relaxation 
frequencies s~, s and s" which denote on the frequency 
scale the posltion of the maximum Lma x and of the lower and 
upper half-width of the spectrum: 

Lmax (5) 
L(Sm) = Lma x L(s') = L(s") = -~ 

Because of their sensibility to the form of the spectrum the 
parameters half-width b s and asymmetry-coefficient u s de- 
fined by the equations 
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b = lg s" - lg s I 
s 

Clg s'- lg Sm) - Clg s m - Ig sr~ ~6) 

Us = lg s 'J - lg s 

s~ and s" are often used instead of Sm, 

In order to demonstrate the temperature-dependence of the 
spectrur~dielectric measurements were carried out in a large 
range of temperatures on polychlorostyrene (PCIS) as an 
example, because of its ~-relaxation being not disturbed by 
neighbouring relaxation processes. The characteristic rela- 
xation frequencies Sm, s and s" obtained by an analysis of 
the experimental dat~ are marked by points in Fig. 4. 

Ig s 

Poiychlorostyrene 

7 s' 

214 215 216 2,7 28  10 3 
T/K 

Fig.1 

Tlmlpetlture dependence of the characteristic relaxation frequencies sm,s' and s" 

o Ex rimental vaiue$ 

Fig. 2 shows ~hese results in terms of the half-width b s 
and the asymmetry-coefficient u s- 

The figures represent the temperature dependence of the 
position and the form of the spectra generally found for 
the ~-relaxation of amorphous polymers. The interpreta- 
tion will be presented in the next section. 
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INTERPRETATION OF THE TEMPERATURE DEPENDENCE OF THE SPECTRU~ 

In order to explain the temperature dependence of the 
spectrum it seems to be obvious (for T > T~) to transfer the 
free-volume theory, up to this time successfully applied to 
the mean relaxation frequency s, to the relaxation frequen- 
cies sin, s J and s ~. 

For the maximum-frequency Sm the basic relation of the 
free volume theory should hold: 

s m = soo expIB/fl (7) 

where B = vX/v f = ~f/V 

B - constant (V x is the free volume at least necessary for 
the rearrangement of a segment ; V is the mean volume 
of a segment) 

f - relative free volume (Vf is the mean free volume) 
soo limit value of s m for f ~ oo 

The free volume depends on the temperature, for T > Tg 
obeying the linear relation 

f(T) = ~ (T - To) , T > Tg (8) 

where n~ = ~2 - ~I (Sa) 

as can be concluded from the linear thermal expansion of the 
specific volume (dilatometric measurement). 

~ - expansion coefficient of the relative free volume 
(~2 and ~I are the expansion coefficients of the rela- 

tive specific volume above and below Tg, respectively) 
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T O - extrapolated value of temperature for which f = 0. 

Introducing eq. (8) in eq. (7) one gets for lg Sm(T ) the 
expression A 

lg Sm(T ) = ig s~ (9) 
T - T O 

where A = 0.434 B/~ (9a) 

which is identical with the WLF-relation. The Sm-values at 
least at three temperatures are necessary for the determina- 
tion of the three constants lg soo , A and T O . 

The curve Sm(T ) in Fig. I (full line) shows the excellent 
fitting to the experimental Sm-Values of PCIS where the 
parameters soo , A and T O are chosen as 

lg soo/sec -I = 14.~9 A/K = 1224.2 T0/K = 305.8 (9b) 

At the glass transition the normal deviation of the expe- 
rimental data from the WLF-plot is observed, caused by the 
volume relaxation which is not ended during the time of 
expe rime nt. 

In order to extend the preceding considerations to the 
temperature dependence of the whole spectrum we introduce a 
distribution around the most probable segmental volume (re- 
lated to the relaxation frequency Sm). In particular the 
segmental volumes V and V ''(with V'> V > V ) may be related 
to the frequencies s and s". 

In analogy to eq. (7) the relaxation frequencies of these 
segments should obey the relations 

s' = soo exp {B ~/f'} (10) 

s" = soo exp {B"/f"} 

The constants B' and B" defined according to the free- 
volume concept as 

B' = Vx' vX" 
'v' ; B" = V" ( 1 1 )  

(compare eq. (7a)) in our model are proposed to be indepen- 
dent of the segmental size. Therefore we get the identity 

B' = B" = B (12) 

where B depends only on the type of the substance. 

Contrary to this fact the relative free volume defined 
as the proportion of the mean free volume and the segment 
volume changes for different segments: 

f' = Vf f" = Vf 
v -'-~ ; -T (13) 

whereby f' and f are related to f using eq. (Ta) according 
to: 

f V f. V = W "  f ; = W "  f �9 ( 1 ~ )  

Introducing eq. (8) in eqs. (14) we get the temperature 
dependence of f and f" as 
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f (T) =a~'(T- T o ) 
r'  (T) -afl"(T - T o) (I~) 

with the expamsion coefficients 

Finally, to make a statement regarding s~o and s~ we use 
the experimental fact that the half-width b decreases con- 
tinuously with the increase of the temperature. Therefore 
the conclusion should be justified that b s ~ 0 for T 4 oo , 
or 

, ,  (~6)  Slo<~ =: SC~ o -~ Soo �9 

With the relations (12), (15) and (16) we get for the 
eqs. (10) the final result of the temperature dependences 
of s and s" , respectively: 

A 
l g  s ' ( T )  = l g  soo  T A" TO ( 1 7 )  

lg  s,' (T)  ,, l g  s~oo 
T - T O 

where A' = 0.434 B/A~ ; A' = 0.434 B/A~'. (17a) 

The temperature dependence of s' (and s") obeys a WLF-like 
equation differing from eq. (9) by the value of one constant 
(A' and ~' , respectively) only. The determination of A' and 
A' requires the knowledge of s and s" at least at one tem- 
perature. 

a d ~i ac The curves s ~ (T) n s (T) cording to eqs. (17) at PCIS 
(A ~ /K = 1288.6; A"/K = 1122.5) drawn by full lines in Fig. I 
show the good fitting to the experimental points in the 
temperature range T > Tg. 

The introduction of eqs. (17) and (9) in eqs. (6) leads 
to the expressions which are expected from the theory for 
b s(T) and u s(T): 

A' - A" 2A - (A' + A" ) ( 1 8 )  
bs(T) = T - T O ; Us = A - ~' 

It is remarkable that the coefficient of asymmetry does 
not depend on the temperature. 

The theoretical curves according to eqs. (17) are shown 
in Fig. 2 as full lines with sufficient fitting to the 
experimental points. 

Still, it should be noticed that we can get the relation 
between the constants A , ~ , ~ and the relative volumes 
of the segments V /V and V"/V by the equations (9a), (15a) 
ana (17a) a s  

V' A' V" A" 
~--= ~- ; ~--= ~-- . (19) 

Because the preceding considerations should be valid for 
any other segment, moreover, the complete distribution of 
the segments is available by L(s) determined at one tempe- 
rature only. It is of interest that this distribution is 
independent of the temperature. 
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The deviations of s ~ and s ~' from their theoretical plots 
(predicted for T > T~) appearing within the glass transition 
range can be discusNed in a qualitative manner only at pre- 
sent. At decreasing temperature near T~ it can be observed 
that s' (T), Sm(T ) and s"(T) deviate subsequently from their 
WLF-like plots, the deviations being reflected also by a 
decrease of b~ and a rise of u s within a range of a few 
degrees of Kelvin. This can be understood in terms of a gra- 
dual freezing which spreads from the larger to the smaller 
segments. Further investigations are necessary in order to 
clarify this field. 
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